Non-euclidean Statistics for Covariance Matrices, with Applications to Diffusion Tensor Imaging1 by Ian
نویسندگان
چکیده
The statistical analysis of covariance matrix data is considered and, in particular, methodology is discussed which takes into account the nonEuclidean nature of the space of positive semi-definite symmetric matrices. The main motivation for the work is the analysis of diffusion tensors in medical image analysis. The primary focus is on estimation of a mean covariance matrix and, in particular, on the use of Procrustes size-and-shape space. Comparisons are made with other estimation techniques, including using the matrix logarithm, matrix square root and Cholesky decomposition. Applications to diffusion tensor imaging are considered and, in particular, a new measure of fractional anisotropy called Procrustes Anisotropy is discussed.
منابع مشابه
Non-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging
The statistical analysis of covariance matrix data is considered, and in particular methodology is discussed which takes into account the non-Euclidean nature of the space of positive semi-definite symmetric matrices. The main motivation for the work is the analysis of diffusion tensors in medical image analysis. The primary focus is on estimation of a mean covariance matrix, and in particular ...
متن کاملLocal Log-Euclidean Covariance Matrix (L2ECM) for Image Representation and Its Applications
This paper presents Local Log-Euclidean Covariance Matrix (LECM) to represent neighboring image properties by capturing correlation of various image cues. Our work is inspired by the structure tensor which computes the second-order moment of image gradients for representing local image properties, and the Diffusion Tensor Imaging which produces tensor-valued image characterizing the local tissu...
متن کاملAssessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation
Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...
متن کاملA Statistical Study of two Diffusion Processes on Torus and Their Applications
Diffusion Processes such as Brownian motions and Ornstein-Uhlenbeck processes are the classes of stochastic processes that have been investigated by researchers in various disciplines including biological sciences. It is usually assumed that the outcomes of these processes are laid on the Euclidean spaces. However, some data in physical, chemical and biological phenomena indicate that they cann...
متن کاملLevel set segmentation using image second order statistics
This paper proposes a novel level set based image segmentation method by use of image second statistics and logarithmic Euclidean metric. Different from previous tensor based image segmentation approaches, the proposed method adopts covariance feature as region-level descriptor rather than pixel-level one. On the basis of feature image, we utilize second order statistics of image feature, i.e.,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009